Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism
نویسندگان
چکیده
During bipedal walking, modern humans dorsiflex their forefoot at the metatarsophalangeal joints (MTPJs) prior to push off, which tightens the plantar soft tissues to convert the foot into a stiff propulsive lever. Particular features of metatarsal head morphology such as "dorsal doming" are thought to facilitate this stiffening mechanism. In contrast, chimpanzees are believed to possess MTPJ morphology that precludes high dorsiflexion excursions during terrestrial locomotion. The morphological affinity of the metatarsal heads has been used to reconstruct locomotor behavior in fossil hominins, but few studies have provided detailed empirical data to validate the assumed link between morphology and function at the MTPJs. Using three-dimensional kinematic and morphometric analyses, we show that humans push off with greater peak dorsiflexion angles at all MTPJs than do chimpanzees during bipedal and quadrupedal walking, with the greatest disparity occurring at MTPJ 1. Among MTPJs 2-5, both species exhibit decreasing peak angles from medial to lateral. This kinematic pattern is mirrored in the morphometric analyses of metatarsal head shape. Analyses of Australopithecus afarensis metatarsals reveal morphology intermediate between humans and chimpanzees, suggesting that this species used different bipedal push-off kinematics than modern humans, perhaps resulting in a less efficient form of bipedalism.
منابع مشابه
Interpretation of footprints from Site S confirms human-like bipedal biomechanics in Laetoli hominins.
The recent discovery of additional hominin footprints at Laetoli (Masao et al., 2016) offers a rare opportunity to revisit the biomechanics of bipedalism in early hominins, a trait that was a defining event in the evolution of the human lineage (Darwin,1871).While a great deal of work has explored how and why this hallmark trait evolved, recent debates have often focused on how best to reconstr...
متن کاملThe Laetoli footprints and early hominin locomotor kinematics.
A critical question in human evolution is whether the earliest bipeds walked with a bent-hip, bent-knee gait or on more extended hindlimbs. The differences between these gaits are not trivial, because the adoption of either has important implications for the evolution of bipedalism. In this study, we re-examined the Laetoli footprints to determine whether they can provide information on the loc...
متن کاملLaetoli Footprints Preserve Earliest Direct Evidence of Human-Like Bipedal Biomechanics
BACKGROUND Debates over the evolution of hominin bipedalism, a defining human characteristic, revolve around whether early bipeds walked more like humans, with energetically efficient extended hind limbs, or more like apes with flexed hind limbs. The 3.6 million year old hominin footprints at Laetoli, Tanzania represent the earliest direct evidence of hominin bipedalism. Determining the kinemat...
متن کاملEarly hominin diversity and the emergence of the genus Homo.
Bipedalism is a defining trait of hominins, as all members of the clade are argued to possess at least some characters indicative of this unusual form of locomotion. Traditionally the evolution of bipedalism has been treated in a somewhat linear way. This has been challenged in the last decade or so, and in this paper I consider this view in light of the considerable new fossil hominin discover...
متن کاملLaetoli footprints reveal bipedal gait biomechanics different from those of modern humans and chimpanzees.
Bipedalism is a key adaptation that shaped human evolution, yet the timing and nature of its evolution remain unclear. Here we use new experimentally based approaches to investigate the locomotor mechanics preserved by the famous Pliocene hominin footprints from Laetoli, Tanzania. We conducted footprint formation experiments with habitually barefoot humans and with chimpanzees to quantitatively...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016